

Analysis Report of Majestic Earth Minerals

Procedure: Chloride, fluoride and bromide were determined via Ion Chromatography (I.C.). Ammonium ion was determined by the Kjeldahl method. Cold Vapor Atomic Absorption (CVAA) spectroscopy was used or mercury. Graphite Furnace Atomic Absorption (GFAA) spectroscopy was employed for the determination for arsenic, selenium, lead and antimony. All other elements were determined quantitatively or semi-quantitatively using inductively coupled Plasma Optical Emission Spectrometry (ICP-OES). Double checks for the majority of elements were also performed by inductively Couple Plasma Mass Spectroscopy (ICP-MS). Where necessary, samples were diluted or concentrated before analysis. All amounts listed are in mg/L (milligrams per liter). Total minerals as determined by evaporation: 15,100 mg/L (anhydrous), 19,000 mg/L (crystalline hydrates).

ANALYTE	UNITS	QUANTITY	ANALYTE	UNITS	QUANTITY	ANALYTE	UNITS	QUANTITY
Aluminum	mg/L	1490	Holmium	mg/L	0.0055	Ruthenium	mg/L	0.0015
Antimony	mg/L	0.185	Indium	mg/L	0.005	Samarium	mg/L	0.0425
Arsenic	mg/L	0.005	lodine	mg/L	less than 0.005	Scandium	mg/L	0.045
Barium	mg/L	0.105	Iridium	mg/L	0.005	Selenium	mg/L	0.0075
Beryllium	mg/L	0.08	Iron	mg/L	320	Silicon	mg/L	95
Bismuth	mg/L	0.0025	Lanthanum	mg/L	0.195	Silver	mg/L	0.001
Boron	mg/L	1.525	Lead	mg/L	0.005	Sodium	mg/L	82.5
Bromine	mg/L	0.055	Lithium	mg/L	5.45	Strontium	mg/L	1.05
Cadmium	mg/L	0.031	Lutetium	mg/L	0.0105	Sulfur (sulfate)	mg/L	12075
Calcium	mg/L	140	Magnesium	mg/L	370	Tantalum	mg/L	0.003
Carbon	mg/L	60	Manganese	mg/L	14	Tellurium	mg/L	0.015
Cerium	mg/L	0.55	Molybdenum	mg/L	0.001	Terbium	mg/L	0.0175
Cesium	mg/L	0.003	Neodymium	mg/L	0.375	Thallium	mg/L	0.425
Chloride	mg/L	140	Nickel	mg/L	1.345	Thorium	mg/L	0.0025
Chromium	mg/L	0.105	Niobium	mg/L	less than 0.01	Thulium	mg/L	0.007
Cobalt	mg/L	1.075	Nitrogen (kjeldahl)	mg/L	576	Tin	mg/L	0.0155
Copper	mg/L	0.11	Osmium	mg/L	0.0045	Titanium	mg/L	0.085
Dysprosium	mg/L	0.045	Palladium	mg/L	0.001	Tungsten	mg/L	less than 0.003
Erbium	mg/L	0.04	Phosphorus	mg/L	0.005	Vanadium	mg/L	0.0495
Europium	mg/L	0.002	Platinum	mg/L	less than 0.001	Ytterbium	mg/L	0.055
Fluoride	mg/L	0.06	Potassium	mg/L	8.45	Zinc	mg/L	397.5
Gadolinium	mg/L	0.075	Praseodymium	mg/L	0.0325	Zirconium	mg/L	0.105
Gallium	mg/L	0.006	Rhenium	mg/L	0.002	Yttrium	mg/L	190
Germanium	mg/L	0.33	Rhodium	mg/L	0.00045	Oxygen	mg/L	
Gold	mg/L	less than 0.001	Rubidium	mg/L	0.0435	Hydrogen	mg/L	
Hafnium	mg/L	0.0015						

^{*}The analyses were performed by multiple certified laboratories using samples from multiple production batches and represent average values. This statement of analysis has been independently reviewed for accuracy by associates of Dr. Gerhard Schrauzer, PhD, Director of the Biological Trace Elements Research Institute, the Western Analysis Laboratory and Coors Ceramics Company. Youngevity[®] Majestic Earth Minerals are plant derived colloidal minerals and are not routinely tested by the United States Food and Drug Administration. Although great care is taken in the processing of this product, Youngevity[®] Majestic Earth Minerals are plant derived colloidal minerals and as such should be considered a "Natural Living Product". Because of this, variation of color, taste and consistency may occur between production batches.